IT Course in Nepal -BICT Blog || Complete Guide for IT Students

 

Unit 1: Computations and Errors   (3)

1.1.      Significant digits

1.2.      Errors

1.3.      General error formula

1.4.      Error in a series approximation

Unit 2: Solution of Algebraic and Transcendental Equations     (8)

2.1.      Linear equations

2.2.      Graphical solution of equations

2.3.      Bisection method

2.4.      The method of false position

2.5.      Iteration method

2.6.      Newton – Raphson method

2.7.      General Newton’s formula for multiple roots

2.8.      Muller’s method

Unit 3: Solution of Linear Simultaneous Equations   (6)

3.1       Gauss elimination method

3.2       Gauss – Jordan method

3.3       Jacobi – Iteration method

3.4       Gauss – Seidel iteration method

3.5.      Matrix inversion method

3.6       Factorization method

3.7       Iteration method

3.8       Partition method

 

Unit 4: Finite differences     (4)

4.1.      Forward difference operator

4.2.      Forward difference table

4.3.      The operator E

4.4.      Relation between the operator E and D

4.5.      The operator D

4.6.      Backward difference table

4.7.      Factorial polynomial

Unit 5 Central differences    (4)

5.1.      Central difference operator

5.2.      Central difference table

5.3.      Mean operator

5.4.      Relationship between operators D, Ñ, E, μ and d

 

Unit 6: Interpolation with Equal Intervals            (5)

6.1.      Newton-Gregory forward interpolation formula

6.2.      Newton-Gregory backward interpolation formula

6.3.      Error in the interpolation formula

Unit 7: Interpolation with Un-equal Intervals       (5)

7.1.      Linear interpolation

7.2.      Quadratic interpolation

7.3.      Divide differences

7.4.      Second divided difference

7.5.      Relation between divided and ordinary differences

Unit 8: Central difference Interpolation (8)

8.1.      Gauss’ forward interpolation formula

8.2.      Gauss’ backward interpolation formula

8.3.      Bessel’s formula

8.4.      Stirling’s formula

 

Unit 9: Numerical Differentiation   (4)

9.1       Numerical differentiation

9.2.      Derivative using forward difference formula

9.3.      Derivative using backward difference formula

9.4.      Derivative using central difference formula

 

Unit 10: Numerical Integration       (5)

10.1     General quadrature formula for equidistant ordinates

10.2     Trapezoidal rule

10.3     Simpson’s One –Third rule

10.4     Simpson’s Three – Eight rule

10.5     Bool’s rule

10.6     Weddle’s rule

10.7     Errors in quadrature formula

10.8     Newton Cote’s formula

10.9     Deductions from Cote’s formula

10.10   Double integration

 


Google Maps

Hamro Patro

Popular Posts